

RESOURCES FOR "HSC-I CHEMISTRY" ZUEB EXAMINATIONS 2021

PREFACE:

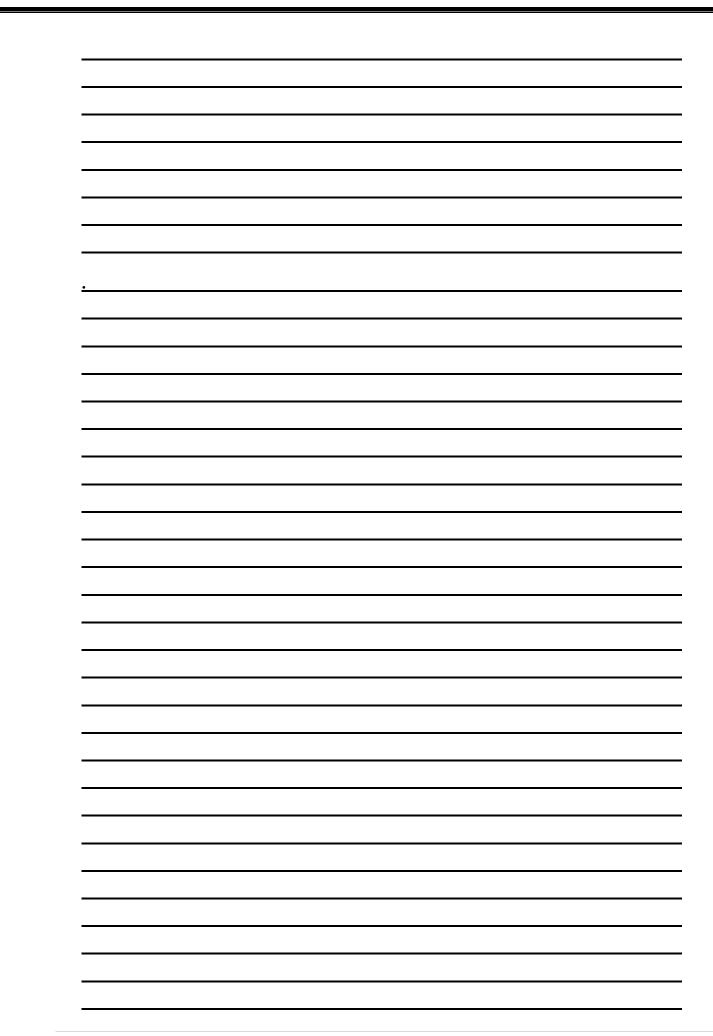
The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from www.zueb.pk to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

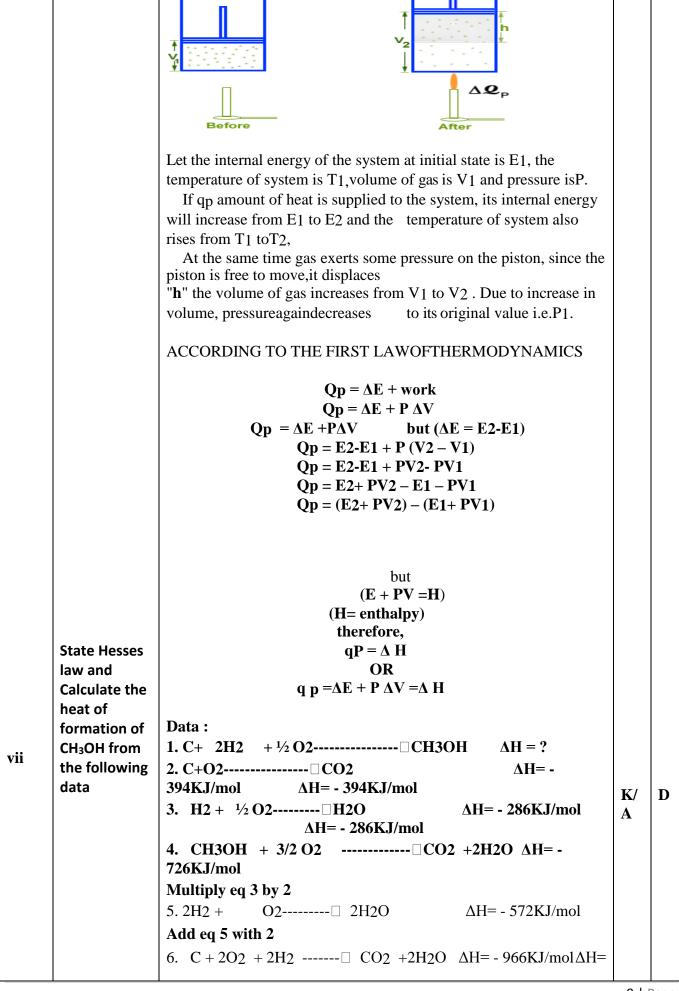

1. Extended Response Questions (ERQs)

HOW TO ATTEMPT ERQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION C (LONG ANSWER QUESTIONS)

1.	What is a covalent bond? Explain the types of covalent bond and their ch	aracter



S#	ERQ	ANSWER	CL	D L
1.	Ethylene glycol is used as an antifreeze. Combustion of 6.38gm of ethylene glycol gives 9.06 gm of CO ₂ and 5.58 gm of H ₂ O. Ethylene Glycol contains Carbon , Hydrogen and Oxygen find its empirical formula?	Mass of sample = 6.38gm Massof CO2 = 9.06gm Massof H2O = 5.58gm Empirical formula =? Elements present = C,H,O Solution Mass of Carbon = 1 mole mass of carbon x mass of CO2/1 mole mass of CO2 = 12x9.06/44 = 2.4709 gm. Mass of Hydrogen = 2 mole mass of Hydrogen x mass of H2O /1 mole mass of H2O = 2x 5.58 / 18 = 0.62gm. % of Carbon = Mass of C x100/Mass of Sample = 38.72% % of Hydrogen = Mass of H x100/Mass of Sample =9.717% % of Oxygen = 100 - (% of Carbon + % of Hydrogen) =51.56% Mole ratio of Carbon = % of C / At. Mass of C = 3.22 Mole ratio of Hydrogen = % of H / At. Mass of O = 3.22 Simple ratio of Oxygen = % of O/ At. Mass of O = 3.22 Simple ratio of Hydrogen = Mole ration of C / Least mole ratio = 1 Simple ratio of Oxygen = Mole ration of O / Least mole ratio =1 Empirical Formula = CH3O	K/ A	M
2.	State the following?	*Isomorphism Existence of different substances in one crystalline form is known as "ISOMORPHISM" *Atomic crystal Metal atoms are closely packed or held together by metallic bond called as atomic crystals In metals valence electron move freely in crystal lattice to form an electron cloud in which positive ions are immersed * Grahams law. Graham's law is a quantitative relation between the density and rate of diffusion of gases. Statement: The rate of diffusion of a gas is inversely proportional to the square root of its density. * Gay-Lussac Law It states that: Gases react in the ratio of small whole numbers by volume under similar	K/A	M
		numbers by volume under similar condition of temperature and pressure. The		

	Hydration and Hydrolysis	Hydra	ation	Hydr	olysis			
			Different colour shown	rs are	Specific colored lines are shown			
					Specific gaseous source is used			
	and Line spectrum		No line of demarcation		Line of demarcation		K/ A	E
	between the following.(any two) *Continuous		CONTINEOUS	<u> </u>	LINE		T 71	107
	Differentiate							
iv	Dipole moment of CO ₂ is zero while SO ₂ has value of dipole moment	geomet	e CO2 has linear ry while SO2 has o the presence of	angul	ar geometry it		K/ A	E
b)	Write reasons * Water expands when cooled below4°C	Becaus	e of breakage of	Hydrog	gen Bonding		K/ A	E
iii(a)	the electronic configuration of	1s ² ,2s ² *S ⁻² (Z	* $Fe^{+2}(Z = 26)$ No. of $e=26-2=24$ $1s^2,2s^2,2p^6,3s^2,3p^6,4s^2,3d^4$ * $S^{-2}(Z=16)$ No. of $e=16+2=18$ $1s^2,2s^2,2p^6,3s^2,3p^6$				K/ A	E
	Write down		64 / 0.0821 x 29					
		OR	mass/ $RT = Mass$ Mass $/RT = D$	s/Vol				
		Solutio Formul PV/ RT	rmula = PV = nRT / RT = Mass/Mol Mass					
ii	Calculate the density of SO ₂ in g/dm ³ at 25°C and 300torrpressur e.	$T = 25^{\circ}$ $P = 300$ $Molecu$ $R = 0.0$	Data: $T = 25^{0}C + 273 = 298 \text{ K}$ P = 300 torr / 760 = 0.394 atm. Molecular mass of SO2 = 64gm R = 0.0821 atm.lit / mol k					E
		volume	e of a sample of g is directly propo ature in Kelvin.	-				

			7	***	. •.•			
		1 1	Vater reacts with		r reacts with			
			ompounds but it		ounds but it break		T 7,	_
			oesnot break	bond			K/	E
			onding in water	ın wa	ter molecule		A	
			nolecule	G!				
			o change in PH of	Chan	ge in PH happens			
			olution	T.	111 /1 /			
			is an exothermic		ıld be exothermic			
			rocess		dothermic process			
			lydrogen bonding or ordinate covalent		bonding is			
				invol	ved			
			pe f bonding is involved					
			f bonding is involved	No of	fact often heating			
			Vater of hydration ould be removed	No ei	ffect after heating			
	Sigma and pi	1 1 -	fter					
	bond		eating					
	Dona							
			Sigma bond		Pi bond		K/	
		1	It is formed by end		It is formed by the side		A	E
			overlapping of half-filled orbitals.	atomic	overlapping of half-filled p ob	itals.		
		Overlapping takes place alon inter-nuclear axis. The extent of overlapping is and the bond formed is stron		ong the	Overlapping takes perpendicular to the inter-nuaxis.	olace clear		
					The extent of overlappin smaller and the bond forme weaker.			
		4	There is free rotation arous sigma bond and so no geor isomerism is possible.		There is no free rotation a the pi bond and so geome isomerism possible.	STREET BY		
	If 16ml of	5	participate in sigma	ls can bond	Only p orbitals participate ir formation of pi bonds.	the		
v	hydrogen diffuse in 30sec .what volume of SO ₂ will diffuse in the same time (30sec) under similarconditi ons Explain Hybrid orbital hydrogen diffuse in 30sec .what volume of SO ₂ will Time of diffusion of Hydrogen = 30 sec Time of diffusion of SO ₂ = 30 sec Vol of SO ₂ = ? Mol mass of H ₂ = 2gm Mol mass of SO ₂ = 64gm Solution Formula R H ₂ = VH ₂ /t H ₂ = 16/30=0.533 R SO ₂ = V SO ₂ /t SO ₂ = V SO ₂ /30 R SO ₂ = $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ V SO ₂ = $\sqrt{16/7}$ SO ₂ = $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ SO ₂ = $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ SO ₂ = $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ SO ₂ = $\sqrt{16/7}$ H ₃ Time of diffusion of Hydrogen = 30 sec Vol of SO ₂ = $\sqrt{16/7}$ Mol mass of SO ₂ = 64gm Solution Formula R H ₂ = $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ H ₃ $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ H ₃ $\sqrt{16/7}$ H ₄ $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ H ₃ $\sqrt{16/7}$ H ₄ $\sqrt{16/7}$ SO ₂ = $\sqrt{16/7}$ H ₂ $\sqrt{16/7}$ H ₃ $\sqrt{16/7}$ H ₄ $\sqrt{16/7}$ H ₅ $\sqrt{16/7}$ H ₇ $\sqrt{16/7}$			K/A	M			
	model of Ethene.				oridized carbon atoms,			
		wh	ich are sigma bonded	to eac	en other and to two			

		hydrogen atoms each. The remaining p- orbitals become	K /	M
		at right angle and parallelly overlap at the carbon form a	A	141
		pi bond, which gives ethane	1.	
		1 sigma bond = Sp2 - Sp2 (between Carbon and carbon) 2 sigma bond = Sp2-s (between Carbon and Hydrogen)		
		1 Pi bond = 2 Pz -2 Pz (un hybridized)		
		1 F1 UOIId — 2 F2 F2 (UII IIYUIIdi2Ed)		
		sigma bond		
		ap ² orbital		
		H pi-bond		
		Orbital structure of ethene		
		Hybridization = Sp2		
		Geometry = Trigonal		
	State First law	Bond angle = 120° BONDLENGTH:		
	of	C=C bond length is 1.34A.		
	Thermodynam	C-H bond length is 1.34A.		
	ics also show	C-11 bond length is 1.05A.		
	that			
vi	q _p =ΔH	STATEMENT	TZ I	D
		<u>STATEMENT</u>	K/	D
		"Energy can neither be created nor destroyed but it can	A	
		be changed from one form of energy to another form of		
		energy"		
		In other words		
		"During any process total energy of system remains		
		constant"		
		OR		
		"During any change the total energy of system and its		
		surrounding remains constant.		
		MATHEMATICAL REPRESENTATION		
		according to the first law of thermodynamics:		
		Heat supplied = increase in internal energy +work done		
		$Q = \Delta E + W$		
		$OR Q = \Delta E + P \Delta V$		
		First law of thermodynamics at constant pressure		
		Heat supplied at constant pressure is also known as "ISOBARIC		
		PROCESS". An isobaric process is one		
		In which no pressure change takes place during the supply of heat to		
		system. In order to understand an isobaric process consider a cylinder fitted		
		In order to understand an isobaric process consider a cylinder fitted with a frictionless piston, the piston is free to move. An ideal gas is		
		enclosed in the cylinder.		

		- 966KJ/mol		
		Subtract eq 4 from 6		
		7. C + 2H2 + $\frac{1}{2}$ O2		
Viii	State and Explain the law of Mass action . Derive the expression for the general reversible reaction given - m A + n B ↔ x C + y D	Law of mass action According to the law of mass action. "The rate at which a substance reacts is directly proportional to its active mass " Rate [Reactant] The rate of reaction is directly proportional to the product of the active masses of reactants. Consider a general reversible reaction A + B C + D	K/A	M
		According to the law of mass action:		
		Rate of reaction [A][B]		
	Determination of equilibrium constant by	Consider a general reaction aA + bB cC + dD According to the law of mass action		
	using	Rate offorwardreaction [A] ^a [B] ^b		
	equilibrium	Rate of forward reaction = Kf [A] ^a [B] ^b Similarly,		
ix	law	Rate of backward reaction [C] ^c [D] ^d Rate of backward reaction = Kb [C] ^c [D] ^d	K/	
		Where Kf = rate constant for forward reaction Kb = rate constant for backward reaction a, b, c, d = number of moles At equilibrium rate of forward reaction becomes equal to the rate of backward reaction, thus, Rate of forward reaction = Rate of backward	A	M
		reaction		
	Derive expression	$Kf [A]^a [B]^b = Kb [C]^c [D]^d$ $Kf / Kb = [C]^c [D]^d / [A]^a [B]^b$ Let $Kf/Kb = Kc$ $Kc = [C]^c [D]^d / [A]^a [B]^b$ This is the expression of equilibrium constant where c represents concentration. The energy of electron = $-2\pi^2 Z^2 e^4 / n^2 h^2$		
3(a)	for the frequency and wave number when the electron	See from book page number 93-95		
	jumps from		K/	E

	higher orbit		Α	
	(n ₂) to lower		1.	
	orbit (n ₁)			
	Orbit (III)			
	Explain the	Surface area of reactants		
	effects of			
	surface area	- Greater the surface area, higher is the rate of reaction.		
	and	- For example finely divided calcium carbonate		
	Temperature	(marble) reacts more quickly with hydrochloric		
	on the rate of	acid than calcium carbonate chips. It is due to the		
	reaction.	fact that powered calcium carbonate offers larger		
		surface area to the reacting acid, so greater contact		
		between individual particles is done and also the	K /	
		surface molecules reacts more quickly.	A	E
			• •	-
		<u>Temperature</u>		
		- The rate of reaction increases with the rise of		
		temperature. It can be explain by the fact that at		
		higher temperature, a greater fraction of colliding		
		molecules posse the necessary energy of activation.		
		- Generally an increase of every 10°K in temperature doubles		
		therate.		
		- As a result the no of effective collision is also double, hence		
		rate isdoubled		
		Tate isdoubled		
		Twice as many molecules possess the threshold kinetic energy at 30°C		
		Temp. = 20°C Temp. = 30°C Threshold Energy		
		Temp. = 30°C		
		Threshold		
		SET LENergy		
		Pero		
		0 Kinetic Energy —		
	What effect	CaCO3 \leftrightarrow CaO+ CO2 Δ H = + 176 KJ/mol, does each of the		
	on the	following changes have		
	position of	* Adding CaCO3 - reaction will move to forward direction		
	equilibrium	* Decrease the volume of container - reaction will move to		
		backward direction		
		* Raising the temperature - reaction will move to forward		
b)		direction		
D)		* Removing CO2 – reaction will move to forward direction	K /	E
			A	12
		1. CONCEPT OF CONSTANT ENERGY	**	
	Derive the			
	formula for	Energy of an electron is constant in one of its		
	the radius of	allowed orbits. As long as an electron remains in its		
	nth orbit of	orbit, it neither absorbs nor radiatesenergy.		
	hydrogen	2. STATIONARYSTATES		
	,			

postulates of Bohrs atomic model	If an electron jumps form higher energy level to a lower energy level, it radiates a definite amount of energy. 4. ABSORPTION OFENERGY If an electron jumps from lower energy		
	level to a higher energy level, it absorbs a definite amount of energy. 5. ENERGYCHANGES Energy released or absorbed by an electron is equal to the difference of energy of two		
	energy levels. Let an electron jumps from a higher energy level E2 to a lower energy level E1. The energy is emitted in the form of light. Amount of energy released is given by:		
	Δ.E= E2-E1 E2 - E1= Where		
	\mathbf{h} = Planck's constant (6.6256 x 10 ⁻³⁴ j.s) \mathbf{V} = Frequency of radiant light		
	6. ANGULAR MOMENTUM OFELECTRON		
	Angular momentum of an electron in an energy level is given by:		
	$m \ v \ r = nh /2 \ \pi$ $Where \ n = 1, 2, 3, \dots$ $m = mass \ of \ electron$ $V = velocity \ of \ electron$ $r = radius \ of \ orbit$ OR		
Write the postulates of electron pair	Only those energy levels or orbits are possible for which angular momentum of electron is integral multiple of $h/2\pi$. Following are the main points of electron pair repulsion theory: (any 4)		
repulsion theory. Explain the shape of the NH ₃ or H ₂ O on the basis of	 There are two types of electron pairs surrounding the central atom. Bond pair. And Lone pair. These bond pairs are known as active set of electrons. These electron pairs (bond pairs or lone pairs) repel each 		
electron pair repulsion theory.	 other. Due to repulsion, electron pairs of central atom try to be as far as possible. Hence, they arrange themselves in space in such a manner that the force of repulsion 	K/ A	D

between them is minimized.

• The force of repulsion between lone pairs and bond pairs is not the same. The order of repulsion is as follows:

lone pair-lone pair-lone pair-bond pair-bond pair.

- Pi-electron pairs are not considered as an active set of electrons.
- The shape of molecule depends upon total number of electron pairs surrounding the central atom.

SHAPE OF NH3 BY E.P.R THEORY

Central atom = **Nitrogen**

Surrounding atom = **Hydrogen**

At. Number of Nitrogen = 7

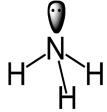
Number of electron = 7

Ground state Electronic configuration = $1s^2$, $2s^2$, $2px^1$, $2py^1$,

 $2Pz^{\underline{1}}$ Number of valence electron = 3 unpaired electron with one lone

pair Number of bond pairs = 3 bond pairs with one lone pair
BOND FORMATION

Nitrogen utilizes three unpaired electrons to form bond with s- electron of hydrogen while lone pair remain as it is and it takes part in geometry prediction


Its structure is Tetrahedral with bond angles of 107°.

Geometry: Tetrahedral (with one lone pair)

Shared Pair

Bond angle: 107°.

SHAPE OF H2O BY E.P.R THEORY

Central atom = **Oxygen**

Surrounding atom = **Hydrogen**

At. Number of Oxygen = 8

Number of electron = 8

Ground state Electronic configuration = $1s^2$, $2s^2$, $2px^2$, $2py^1$,

2Pz¹ Number

of valence electrons= **two unpaired electrons with two lone pair** Number

of bond pair = two bond pairs with two lone pair

Bond making:

Oxygen utilizes its two unpaired electrons to form bond with s- electrons of Hydrogen. The other two lone pairs are

Balance the

given equations by ION electron method.	involved in geometry prediction, Due to reduced angle in H2O, angular or bent structure is formed. Which is tetrahedral in nature with bond angle 104.5 ⁰ Geometry: tetrahedral with two lone pair also called angular Angle: 104.5 ⁰	K/A	D
Explain Arrhenius theory of ionization in detail. Arrhenius theory of ionization consists of the following postulates.(a ny six points)	NaOH Na ⁺ +OH ⁻	K/A	M

		electrolytes such as acetic acid (CH3COOH) ionize only slightly. 6. Ionization is not affected by electric current. 7. When electric current is passed through an electrolytic solution, charges move towards their respective electrodes, i.e. cations towards cathode and anions towards anode .When these ionsreached their respective electrodes, they change into neutral species by the gain or loss of electrons. 8. Degree of dissociation = no of molecules ionize / total number of molecules The dissociation of electrolyte depend upon - Nature of electrolyte: Strong electrolytes 100% ionize and weak electrolytes does not ionize completely - Degree of dilution: More dilution more ionization - Temperature: High temperature more ionization 9. The electrical conductivity depends upon: - The number of ions present in the solution - Speed of ions		
b)	what are cathode rays? Give the properties of cathode rays and conclusion drawn about the structure of the atom from this experiment.	Cathode rays were discovered by crooks tube experiment these are the negative charged rays emerge from cathodic side consist of electrons. PROPERTIES OF CATHODE RAYS 1. Cathode rays travel in straight line that's why it produces shadow 2. These rays deflected in electric field towards positive site means these are negatively charged 3. These rays deflected in magnetic field towards north pole 4. They produce mechanical pressure from fast moving electron, which can move a paddle wheel means these are material particles. 5. These rays have e/m ratio same as of electron so we can say these rays are consist of electron 6. These rays are as fast as speed of light 7. Nature of rays remain same it does not depend on gas filled init. CONCLUSION Different discharge tube with different electrodes were tried. All the experiments gave the same value of charge to mass ratio this shows that electrons could be produced from any kind of matter and hence perhaps were constituent of all matter.	K/ A	M

Define radioactivity? Write down the names of the radioactive rays along with their properties

All the elements having atomic number greater than 82 emit invisible radiation all the time. The phenomenon of emission of these powerful rays is called "Natural Radioactivity" and the element that emits such rays is called "Radio Active Elements".

OR

Spontaneous emission of radiation from radio active elements is called radioactivity

TYPES OF RAYS OBSERVED:

There are three types of rays emitted from radioactive substance

- Alpha rays (move to –ve site of electric field
- Beta rays (move to +ve site of electric field)
- Gamma Rays go straight

- Alpharays	Beta rays	Gamma rays
Positively charged	Negatively charged	neutral
Helium particles	Electrons	Only radiations
Deflect to negative site	Deflect to positive site	Go straight undeflected
Size is bigger speed is slow	Size smaller than alpha so high speed than alpha	Speed equals to speed of light

Panetrating power is low cannot pass through solids	Powe r to penet rate into metal s not solid s	Grea ter po wer of pen etra tion thro ugh soli
Ionizing power of air is high	Ionize gases to less extent	ds Weak ionizer of gases
Produce fluorescence	Can produce floresce nce in	Produce feeble fluorescence

K/ M A

			some			
			substan			
			ces			
		Can		In medical use for cancer therapy		
		used in artifici		cancer therapy		
		al				
		radioac				
		tivity				
c)	4.6 gm of Ethylalcohol and 6.0 gm of acetic acid were kept at constant temperature until equilibirium was established 2.0gm of acetic acid remained unused .* Calculate K _c for the reaction After calculating Kc Calculate the equilibirium concentration of CH ₃ COOC ₂ H ₅ when 1.66 moles of CH ₃ COOH react with 2.17 moles of C ₂ H ₅ OH	0.033 moles Or 0.1-x At equilibrium 0.033 0.033 Formula: Kc = [CH3C [CH3CH2OH]]	esterification N N gms of acetic ac a = 0.033 or x	ethyl acetate ester $CH_3COOCH_2CH_3 + H_2O$ ethyl acetate ester il il X id were left which is $2/60=$ $= 0.1 - 0.033 = 0.067$ $0.067 0.067$ $0.067 0.067$ $0.067 0.067$	K/A	M

 H^+ CH₃COOH + CH₃CH₂OH $CH_3COOCH_2CH_3 + H_2O$ esterification acetic acid ethyl alcohol reaction ethyl acetate ester Initial moles 1.66 2.17 Nil Nil AtEq. 1.66-x 2.17-x \mathbf{X} X Formula: Kc = [CH3COOC2H5] [H2O] / [CH3COOH][CH3CH2OH] $4 = x \cdot x / (1.66-x) (2.17-x)$ Use quadratic equation to get value of x For quadratic eq. a=3, b=-15.32, c=14.408X = 3.86and x = 1.24Correct answer is 1.24 [CH3COOC2H5] = 1.24 moles